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Interaction Terms

Recall our basic setup using an interaction term from last
class:

yi = β1 + β2xi + β3Di + β4xi · Di + εi

E (yi |Di = 1) = (β1 + β3) + (β2 + β4)xi

E (yi |Di = 0) = β1 + β2xi

E (yi |Di = 1)− E (yi |Di = 0) = β3 + β4xi

To Excel for an example with the basketball salary data for
one big example with logs, polynomials, multiple dummies
and an interaction term...
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Another Case of Interaction Terms

Interaction terms are not limited to a dummy variable
interacted with a continuous variable

We can also have a continuous variable interacted with
another continuous variable

The idea and the steps are the same as last class, the
interpretation is a just little more complicated
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Another Case of Interaction Terms

Let’s think about studying obesity, measured by the
body mass index (bmi)

If we think that obesity is a function of hours of exercise
a week and calories consumed per day, we might try to
predict bmi using the following equation:

b̂mii = b1 + b2cali + b3hoursi

More calories should increase bmi, more exercise should
decrease bmi

But calories will have a different effect for people who
exercise a lot versus people who exercise very little

J. Parman (UC-Davis) Analysis of Economic Data, Winter 2011 March 3, 2011 4 / 26



Another Case of Interaction Terms

If we think the effect of calories on bmi differs with the
amount of exercise, we want to include an interaction
term:

b̂mii = b1 + b2cali + b3hoursi + b4cali · hoursi

How do we interpret this interaction term?

It depends on whether we’re most interested in the
relationship between bmi and calories or the relationship
between bmi and exercise
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Another Case of Interaction Terms

b̂mii = b1 + b2cali + b3hoursi + b4cali · hoursi

If we care about the relationship between bmi and
calories:

∆bmi

∆cal
= b2 + b4hoursi

The change in bmi associated with a change in calories
depends on the level of exercise

Assuming b2 is positive, if b4 is positive the change in
bmi with a change in calories will be greater for a
person who exercises a lot compared to a person who
exercises very little

If b4 is negative, the opposite is true
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Another Case of Interaction Terms
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Another Case of Interaction Terms

b̂mii = b1 + b2cali + b3hoursi + b4cali · hoursi

If we care about the relationship between bmi and
exercise:

∆bmi

∆hours
= b3 + b4cali

The change in bmi associated with an increase in hours
of exercise depends on the level of calories consumed

If b4 is positive, the change in bmi with an increase in
hours of exercise will be greater for a person who eats a
lot compared to a person who eats very little

If b4 is negative, the opposite is true
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Another Case of Interaction Terms

Suppose we estimated the equation and came up with:

b̂mii = 30 + .05cali − 2hoursi − .01cali · hoursi

Suppose we want to say, “An increase of 100 calories a
day is associated with in bmi.” To do this we
need to pick a value for hours of exercise

For example, an increase of 100 calories a day is
associated with a 3 point increase in bmi for a person
who exercises 2 hours a week (.05 · 100− .01 · 100 · 2)

For what level of exercise will an increase in calories
lead to no predicted change in bmi? 5 hours a week
(0 = .05∆cali − .01∆cali · 5)
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Model Misspecification

We’ve spent a lot of time on interpreting coefficients
and testing hyptheses

However, everything we’ve done has been based on a
rather strict set of assumptions

When these assumptions are violated (which happens
often), what happens to our results?

We’ll consider a few different ways in which are
assumptions can be wrong: we chose the wrong model,
errors are correlated with the regressors, errors have
nonconstant variance and errors are correlated with
each other
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Misspecified Models

Recall that we assumed the population model was:

y = β1 + β2x2 + ...+ βk xk + ε

There are a few ways this model could be wrong

We may have omitted important variables
We may have included irrelevant variables
Relationships may not be linear
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Omitted Variable Bias: Motivation

Let’s think about what happened when we went from
bivariate to multivariate regression

The interpretation of coefficients changed slightly, with
multivariate regression the coefficient on xj told us the
change in y with a change in xj holding all of the other
regressors constant

This means that the same variable in a bivariate
regession may have a different coefficient when included
in a multivariate regression (recall the basketball
example from earlier in class)
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Omitted Variable Bias

Suppose the true model is:

y = β1 + β2x2 + β3x3 + ε

If all our assumptions hold, regressing y on x2 and x3
will get an unbiased estimate b2 (E (b2) = β2)

Suppose we regress y on just x2, getting:

ŷ = b̃1 + b̃2x2

Will E (b̃2) = β2? Probably not.
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Omitted Variable Bias

If x2 is correlated with x3, the coefficient b̃2 in the
bivariate regression will be picking up the effects of
both x2 and of x3

How big is this effect? It depends on how strong the
relationship between x2 and x3 is

Suppose x3 is related to x2 by:

x3 = γ1 + γ2x2 + ν

If we aren’t holding x3 constant, a change in x2 will
have two effects on y :

E (b̃2) =
∆y

∆x2
+

∆y

∆x3

∆x3
∆x2

E (b̃2) = β2 + β3γ2
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Omitted Variable Bias

So the expected value of b̃2 is equal to β2 plus another
term that depends on the relationship between x2 and
the omitted variable as well as the omitted variable and
the dependent varible

As long as γ2 isn’t zero and β3 isn’t zero, E (b̃2) won’t
equal β2

So b̃2 is a biased estimator of the coefficient for x2

We refer to this as an omitted variable bias
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Omitted Variable Bias

E (b̃2) = β2 + β3γ2

There will be an upward bias if β3 > 0 and γ2 > 0 or if
β3 < 0 and γ2 < 0

There will be a downward bias if β3 < 0 and γ2 > 0 or
if β3 > 0 and γ2 < 0

If γ2 = 0, there will be no bias (but our model is
incorrect)

If β3 = 0, there will be no bias (and x3 shouldn’t be in
our model anyway)
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Dealing With Omitted Variable Bias

What do we do about omitted variable bias?

The easiest thing is to just include the omitted variable
in our regression

Often this isn’t possible due to data limitations

There are some more advanced techniques that may
work (instrumental variables, natural experiments)

If we can’t add the omitted variable to the regression or
use a fancy approach, one thing we can still do is try to
sign the bias using economic intuition

J. Parman (UC-Davis) Analysis of Economic Data, Winter 2011 March 3, 2011 17 / 26



Example: Smeed’s Law

Figure from John Adams (1987), “Smeed’s Law: some further
thoughts”, Traffic Engineering and Control, 28 (2)
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Example: Smeed’s Law

A regression of car accidents on the number of cars
would give a negative coefficient (b̃2 < 0)

But there may be a downward bias, why?

More cars mean slower speeds due to congestion
(γ2 < 0)
Slower speeds mean fewer accidents (β3 > 0)

If we could hold car speeds constant, more cars may
very well lead to more accidents (β2 > 0)
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Example: Returns to Education

Economists have a really hard time coming up with
good estimates of returns to education (the change in
income associated with an increase in education)

Why? There are always several important omitted
variables

One of the key ones is ability:

High ability people are more likely to go to school
(γ2 > 0)
High ability people will be better at their jobs and earn
higher salaries (β3 > 0)
Omitting ability will lead to an upward bias on the
coefficient on education in a wage regression
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Example: Returns to Education

Our first stage equation is therefore

Educi ¼ aþ bðMonths Before CutoffÞi þ gZi

þ pðRelative PositionÞi þ �i, ð2Þ

where Months Before Cutoff is an indicator variable
taking six possible values (�3, �2, �1, 1, 2 or 3),
Z is a vector of demographic characteristics—sex,
indicator variables for year of birth, and indicator
variables for state of birth, and Relative Position is
a continuous variable taking the value 0 for a
student born in the month prior to the cutoff (who
we expect to be in the youngest twelfth of the class),
1
11
for a student born 2 months before the cutoff, and

so on, up to 1 for a student born in the month after
the cutoff date (who we expect to be in the oldest
twelfth of the class).

Our second-stage equation is

LnðY Þi ¼ dþ zÊ duci þ ZZi þ tðRelative PositionÞi þ ui.

(3)

The first column of Table 3 shows the OLS
estimate, using the same methodology as in Table 1,
Panel A, column 3, but with state fixed effects, and
restricting the sample to those born within 3 months
of the cutoff dates listed in Table 2. Reassuringly,
this OLS estimate is almost identical to the
corresponding estimate in Table 1.

The second column shows the results using the
Months Before Cutoff instrument. The F-test on the
instruments shows that they are not jointly sig-
nificant. Given that the instruments lack power in

the first stage regression, it is therefore unsurprising
that the point estimate in the second stage regres-
sion is negative, with a 95% confidence interval
ranging from �68% to 48%. We find no evidence of
a relative position effect.

Note however that this approach constrains the
effect of the instrument to operate equally for a
respondent born 1 month before the cutoff date in
1945 and a respondent born 1 month before the
cutoff date in 1978. However, over this period there
has been a fall in the fraction of students dropping
out of school at the earliest opportunity. In
addition, it is possible that the extent to which the
cutoff date was enforced may have changed over
time.

To take account of these two possibilities, we
interact the Months Before Cutoff indicator variable
with the respondent’s birth year, and use this new
variable to instrument for years of education. Our
first and second stage equations are therefore

Educi ¼ aþ bðMonths Before Cutoff � BirthyearÞi

þ gZi þ pðRelative PositionÞi þ �i, ð4Þ

LnðY Þi ¼ dþ zÊ duci þ gZi þ tðRelative positionÞi þ ui

(5)

Column 3 of Table 3 shows the results of this
estimation strategy. The F-test on the excluded
instruments in the first stage regression shows that
they are jointly statistically significant, at the 1%
level. The high degree of statistical significance of

ARTICLE IN PRESS

Table 3

Instrumenting schooling with month of birth dependent variable: Log annual income

(1) (2) (3)

OLS IV Birthmonth IV Birthmonth�Birthyear

Years of education 0.128*** �0.099 0.079**

[0.013] [0.295] [0.032]

Female �0.601*** �0.612*** �0.602***

[0.051] [0.069] [0.057]

Relative position �0.035 0.000

[0.090] [0.072]

Birth year FE? Yes Yes Yes

State FE? Yes Yes Yes

F-test for excluded instruments — 0.65 554.89

P ¼ 0.6605 P ¼ 0.000

Observations 998 998 998

R-squared 0.22 0.21 0.22

Note: Sample is restricted to those aged 25–64 with positive annual income, in the states and years listed in Table 2, born within 3 months

of the cutoff date for school entry. Robust standard errors, clustered at the state�birth month�birth year level, in parentheses. *, ** and

*** denote statistical significance at the 10%, 5% and 1% levels, respectively.

A. Leigh, C. Ryan / Economics of Education Review 27 (2008) 149–160154

From Leigh and Ryan (2008), “Estimating returns to education using different natural experiment
techniques”, Economics of Education Review, 27(2)
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Including Too Many Variables

We’ve seen that omitting important variables leads to
big problems

What if we include too many variables?

It’s not nearly as bad

Our coefficients stay unbiased for the regressors that
should be there but we lose some precision

These problems are small compared to the problems of
omitted variables, so it is best to error on the side of
including questionable regressors
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Non-linear Relationships

We’ve covered the problems of including the wrong set
of variables in our model

The other way we can misspecify the model is by using
the wrong functional form

This is a problem we’ve already encountered and we
solve it with data transformations

One way we’ll notice we have a problem is if we get
distinct patterns in the residuals plotted against a
regressor
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Non-linear Relationships

income

age
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Non-linear Relationships

residuals

age
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Badly Behaved Errors

We’ve just seen that one way we know that the model
is misspecified is if a pattern shows up on a graph of
the residuals and the regressor

This leads us into a new set of problems: badly behaved
error terms

Several problems can pop up with the error terms:

Errors are correlated with the regressors
Errors have nonconstant variance
Errors are correlated with each other
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