Midterm 2 Grade Distribution

Interaction Terms

Recall our basic setup using an interaction term from last class:

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 D_i + \beta_4 x_i \cdot D_i + \varepsilon_i$$

$$E(y_i|D_i = 1) = (\beta_1 + \beta_3) + (\beta_2 + \beta_4)x_i$$

$$E(y_i|D_i=0)=\beta_1+\beta_2x_i$$

$$E(y_i|D_i = 1) - E(y_i|D_i = 0) = \beta_3 + \beta_4 x_i$$

To Excel for an example with the basketball salary data for one big example with logs, polynomials, multiple dummies and an interaction term...

- Interaction terms are not limited to a dummy variable interacted with a continuous variable
- We can also have a continuous variable interacted with another continuous variable
- The idea and the steps are the same as last class, the interpretation is a just little more complicated

- Let's think about studying obesity, measured by the body mass index (bmi)
- If we think that obesity is a function of hours of exercise a week and calories consumed per day, we might try to predict bmi using the following equation:

$$\widehat{bmi}_i = b_1 + b_2 cal_i + b_3 hours_i$$

- More calories should increase bmi, more exercise should decrease bmi
- But calories will have a different effect for people who exercise a lot versus people who exercise very little

 If we think the effect of calories on bmi differs with the amount of exercise, we want to include an interaction term:

$$\widehat{bmi}_i = b_1 + b_2 cal_i + b_3 hours_i + b_4 cal_i \cdot hours_i$$

- How do we interpret this interaction term?
- It depends on whether we're most interested in the relationship between bmi and calories or the relationship between bmi and exercise

$$\widehat{bmi}_i = b_1 + b_2 cal_i + b_3 hours_i + b_4 cal_i \cdot hours_i$$

 If we care about the relationship between bmi and calories:

$$\frac{\Delta bmi}{\Delta cal} = b_2 + b_4 hours_i$$

- The change in bmi associated with a change in calories depends on the level of exercise
- Assuming b_2 is positive, if b_4 is positive the change in bmi with a change in calories will be greater for a person who exercises a lot compared to a person who exercises very little
- If b_4 is negative, the opposite is true

$$\widehat{bmi_i} = b_1 + b_2 cal_i + b_3 hours_i + b_4 cal_i \cdot hours_i$$

 If we care about the relationship between bmi and exercise:

$$rac{\Delta bmi}{\Delta hours} = b_3 + b_4 cal_i$$

- The change in bmi associated with an increase in hours of exercise depends on the level of calories consumed
- If b₄ is positive, the change in bmi with an increase in hours of exercise will be greater for a person who eats a lot compared to a person who eats very little
- If b_4 is negative, the opposite is true

Suppose we estimated the equation and came up with:

$$\widehat{bmi}_i = 30 + .05cal_i - 2hours_i - .01cal_i \cdot hours_i$$

- Suppose we want to say, "An increase of 100 calories a day is associated with _____ in bmi." To do this we need to pick a value for hours of exercise
- For example, an increase of 100 calories a day is associated with a 3 point increase in bmi for a person who exercises 2 hours a week $(.05 \cdot 100 .01 \cdot 100 \cdot 2)$
- For what level of exercise will an increase in calories lead to no predicted change in bmi? 5 hours a week $(0 = .05\Delta cal_i .01\Delta cal_i \cdot 5)$

Model Misspecification

- We've spent a lot of time on interpreting coefficients and testing hyptheses
- However, everything we've done has been based on a rather strict set of assumptions
- When these assumptions are violated (which happens often), what happens to our results?
- We'll consider a few different ways in which are assumptions can be wrong: we chose the wrong model, errors are correlated with the regressors, errors have nonconstant variance and errors are correlated with each other

Misspecified Models

• Recall that we assumed the population model was:

$$y = \beta_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

- There are a few ways this model could be wrong
 - We may have omitted important variables
 - We may have included irrelevant variables
 - Relationships may not be linear

Omitted Variable Bias: Motivation

- Let's think about what happened when we went from bivariate to multivariate regression
- The interpretation of coefficients changed slightly, with multivariate regression the coefficient on x_j told us the change in y with a change in x_j holding all of the other regressors constant
- This means that the same variable in a bivariate regession may have a different coefficient when included in a multivariate regression (recall the basketball example from earlier in class)

• Suppose the true model is:

$$y = \beta_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

- If all our assumptions hold, regressing y on x_2 and x_3 will get an unbiased estimate b_2 ($E(b_2) = \beta_2$)
- Suppose we regress y on just x_2 , getting:

$$\hat{y} = \tilde{b_1} + \tilde{b_2} x_2$$

• Will $E(\tilde{b_2}) = \beta_2$? Probably not.

- If x_2 is correlated with x_3 , the coefficient b_2 in the bivariate regression will be picking up the effects of both x_2 and of x_3
- How big is this effect? It depends on how strong the relationship between x₂ and x₃ is
- Suppose x_3 is related to x_2 by:

$$x_3 = \gamma_1 + \gamma_2 x_2 + \nu$$

 If we aren't holding x₃ constant, a change in x₂ will have two effects on y:

$$E(\widetilde{b_2}) = \frac{\Delta y}{\Delta x_2} + \frac{\Delta y}{\Delta x_3} \frac{\Delta x_3}{\Delta x_2}$$

$$E(\widetilde{b_2}) = \beta_2 + \beta_3 \gamma_2$$

- So the expected value of \tilde{b}_2 is equal to β_2 plus another term that depends on the relationship between x_2 and the omitted variable as well as the omitted variable and the dependent varible
- As long as γ_2 isn't zero and β_3 isn't zero, $E(\tilde{b_2})$ won't equal β_2
- ullet So $ilde{b}_2$ is a *biased* estimator of the coefficient for x_2
- We refer to this as an omitted variable bias

$$E(\widetilde{b_2}) = \beta_2 + \beta_3 \gamma_2$$

- There will be an upward bias if $\beta_3>0$ and $\gamma_2>0$ or if $\beta_3<0$ and $\gamma_2<0$
- There will be a downward bias if $\beta_3 < 0$ and $\gamma_2 > 0$ or if $\beta_3 > 0$ and $\gamma_2 < 0$
- If $\gamma_2 = 0$, there will be no bias (but our model is incorrect)
- If $\beta_3 = 0$, there will be no bias (and x_3 shouldn't be in our model anyway)

Dealing With Omitted Variable Bias

- What do we do about omitted variable bias?
- The easiest thing is to just include the omitted variable in our regression
- Often this isn't possible due to data limitations
- There are some more advanced techniques that may work (instrumental variables, natural experiments)
- If we can't add the omitted variable to the regression or use a fancy approach, one thing we can still do is try to sign the bias using economic intuition

Example: Smeed's Law

Figure from John Adams (1987), "Smeed's Law: some further thoughts", Traffic Engineering and Control, 28 (2)

Example: Smeed's Law

- A regression of car accidents on the number of cars would give a negative coefficient $(\tilde{b_2} < 0)$
- But there may be a downward bias, why?
 - More cars mean slower speeds due to congestion $(\gamma_2 < 0)$
 - Slower speeds mean fewer accidents $(\beta_3 > 0)$
- If we could hold car speeds constant, more cars may very well lead to more accidents $(\beta_2>0)$

Example: Returns to Education

- Economists have a really hard time coming up with good estimates of returns to education (the change in income associated with an increase in education)
- Why? There are always several important omitted variables
- One of the key ones is ability:
 - High ability people are more likely to go to school $(\gamma_2>0)$
 - High ability people will be better at their jobs and earn higher salaries ($\beta_3 > 0$)
 - Omitting ability will lead to an upward bias on the coefficient on education in a wage regression

Example: Returns to Education

Table 3
Instrumenting schooling with month of birth dependent variable: Log annual income

	(1) OLS	(2) IV Birthmonth	(3) IV Birthmonth × Birthyear
Years of education	0.128***	-0.099	0.079**
	[0.013]	[0.295]	[0.032]
Female	-0.601***	-0.612***	-0.602***
	[0.051]	[0.069]	[0.057]
Relative position		-0.035	0.000
		[0.090]	[0.072]
Birth year FE?	Yes	Yes	Yes
tate FE?	Yes	Yes	Yes
F-test for excluded instruments	_	0.65	554.89
		P = 0.6605	P = 0.000
Observations	998	998	998
R-squared	0.22	0.21	0.22

From Leigh and Ryan (2008), "Estimating returns to education using different natural experiment techniques", Economics of Education Review, 27(2)

Including Too Many Variables

- We've seen that omitting important variables leads to big problems
- What if we include too many variables?
- It's not nearly as bad
- Our coefficients stay unbiased for the regressors that should be there but we lose some precision
- These problems are small compared to the problems of omitted variables, so it is best to error on the side of including questionable regressors

Non-linear Relationships

- We've covered the problems of including the wrong set of variables in our model
- The other way we can misspecify the model is by using the wrong functional form
- This is a problem we've already encountered and we solve it with data transformations
- One way we'll notice we have a problem is if we get distinct patterns in the residuals plotted against a regressor

Non-linear Relationships

Non-linear Relationships

Badly Behaved Errors

- We've just seen that one way we know that the model is misspecified is if a pattern shows up on a graph of the residuals and the regressor
- This leads us into a new set of problems: badly behaved error terms
- Several problems can pop up with the error terms:
 - Errors are correlated with the regressors
 - Errors have nonconstant variance
 - Errors are correlated with each other