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Interaction Terms

Recall our basic setup using an interaction term from last
class:
Yi = P1+ Boxi + B3Di + Baxi - Dj +¢€;

E(yi|Di = 1) = (1 + B3) + (B2 + Ba)xi
E(yi|D;j = 0) = 1 + Bax;
E(yi|Di = 1) — E(yi|Di = 0) = B3 + Bax;
To Excel for an example with the basketball salary data for

one big example with logs, polynomials, multiple dummies
and an interaction term...
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Another Case of Interaction Terms

@ Interaction terms are not limited to a dummy variable
interacted with a continuous variable

@ We can also have a continuous variable interacted with
another continuous variable

@ The idea and the steps are the same as last class, the
interpretation is a just little more complicated
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Another Case of Interaction Terms

@ Let's think about studying obesity, measured by the
body mass index (bmi)

o If we think that obesity is a function of hours of exercise
a week and calories consumed per day, we might try to
predict bmi using the following equation:

bmi: = by + bycal; + bshours;

@ More calories should increase bmi, more exercise should
decrease bmi

@ But calories will have a different effect for people who
exercise a lot versus people who exercise very little
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Another Case of Interaction Terms

@ If we think the effect of calories on bmi differs with the
amount of exercise, we want to include an interaction
term:

b/rr?,- = by + bocal; + bshours; + bycal; - hours;

@ How do we interpret this interaction term?

@ It depends on whether we're most interested in the
relationship between bmi and calories or the relationship
between bmi and exercise
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Another Case of Interaction Terms

b/n?,- = by + bycal; + bzhours; + bgcal; - hours;

o If we care about the relationship between bmi and

calories: ]
Abmi

Acal

@ The change in bmi associated with a change in calories
depends on the level of exercise

= by + bghours;

@ Assuming by is positive, if by is positive the change in
bmi with a change in calories will be greater for a
person who exercises a lot compared to a person who
exercises very little

o If by is negative, the opposite is true
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Another Case of Interaction Terms

J. Parman
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Another Case of Interaction Terms

b/m\i; = b1 + bycal; + bshours; + bycal; - hours;

@ If we care about the relationship between bmi and
exercise:

Abmi
Ahours

@ The change in bmi associated with an increase in hours
of exercise depends on the level of calories consumed

= b3 + b4C3/,'

@ If by is positive, the change in bmi with an increase in
hours of exercise will be greater for a person who eats a
lot compared to a person who eats very little

o If by is negative, the opposite is true
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Another Case of Interaction Terms

@ Suppose we estimated the equation and came up with:
I;n\i,- = 30 + .05cal; — 2hours; — .01cal; - hours;

@ Suppose we want to say, “An increase of 100 calories a
day is associated with in bmi." To do this we
need to pick a value for hours of exercise

@ For example, an increase of 100 calories a day is
associated with a 3 point increase in bmi for a person
who exercises 2 hours a week (.05 - 100 — .01 - 100 - 2)

@ For what level of exercise will an increase in calories
lead to no predicted change in bmi? 5 hours a week
(0 = .05Acal; — .01Acal; - 5)

J. Parman (UC-Davis) Analysis of Economic Data, Winter 2011 March 3, 2011



Model Misspecification

@ We've spent a lot of time on interpreting coefficients
and testing hyptheses

@ However, everything we've done has been based on a
rather strict set of assumptions

@ When these assumptions are violated (which happens
often), what happens to our results?

o We'll consider a few different ways in which are
assumptions can be wrong: we chose the wrong model,
errors are correlated with the regressors, errors have
nonconstant variance and errors are correlated with
each other
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Misspecified Models

@ Recall that we assumed the population model was:

y =14 Poxo+ ...+ Bixk + ¢

@ There are a few ways this model could be wrong
o We may have omitted important variables
e We may have included irrelevant variables
o Relationships may not be linear
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Omitted Variable Bias: Motivation

@ Let's think about what happened when we went from
bivariate to multivariate regression

@ The interpretation of coefficients changed slightly, with
multivariate regression the coefficient on x; told us the
change in y with a change in x; holding all of the other
regressors constant

@ This means that the same variable in a bivariate
regession may have a different coefficient when included
in a multivariate regression (recall the basketball
example from earlier in class)
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Omitted Variable Bias

@ Suppose the true model is:

y = B1+ Boxo + Baxz + €

o If all our assumptions hold, regressing y on x> and x3
will get an unbiased estimate by (E(b2) = [32)

@ Suppose we regress y on just x», getting:
9= by + boxo

o Will E(by) = 2?7 Probably not.
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Omitted Variable Bias

@ If x» is correlated with x3, the coefficient 52 in the
bivariate regression will be picking up the effects of
both x» and of x3

@ How big is this effect? It depends on how strong the
relationship between x> and x3 is

@ Suppose x3 is related to x» by:
X3 =71+ 72X +V

o If we aren’t holding x3 constant, a change in xo will
have two effects on y:

~ Ay Ay Axs
E =
(b2) Axo + Ax3 Axo

E(b) = B2 + B3
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Omitted Variable Bias

@ So the expected value of by is equal to B> plus another
term that depends on the relationship between x> and
the omitted variable as well as the omitted variable and
the dependent varible

@ As long as vy, isn’t zero and f3s isn't zero, E(by) won't
equal 8>

e So 52 is a biased estimator of the coefficient for x»

@ We refer to this as an omitted variable bias
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Omitted Variable Bias

E(by) = B2 + B3

@ There will be an upward bias if 83 > 0 and v > 0 or if
B3 <0and 1 <0

@ There will be a downward bias if 53 < 0 and 7, > 0 or
if B3 >0and v <0

@ If 7o =0, there will be no bias (but our model is
incorrect)

e If 53 =0, there will be no bias (and x3 shouldn’t be in
our model anyway)
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Dealing With Omitted Variable Bias

What do we do about omitted variable bias?

@ The easiest thing is to just include the omitted variable
in our regression

@ Often this isn't possible due to data limitations

@ There are some more advanced techniques that may
work (instrumental variables, natural experiments)

o If we can’t add the omitted variable to the regression or
use a fancy approach, one thing we can still do is try to
sign the bias using economic intuition
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Example: Smeed's Law

(e Recalibrated curve
Smeed curve
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Figure from John Adams (1987), “Smeed’s Law: some further
thoughts”, Traffic Engineering and Control, 28 (2)
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Example: Smeed's Law

@ A regression of car accidents on the number of cars
would give a negative coefficient (b < 0)
@ But there may be a downward bias, why?
e More cars mean slower speeds due to congestion
(72 <0)
o Slower speeds mean fewer accidents (83 > 0)
@ If we could hold car speeds constant, more cars may
very well lead to more accidents (52 > 0)
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Example: Returns to Education

@ Economists have a really hard time coming up with
good estimates of returns to education (the change in
income associated with an increase in education)

@ Why? There are always several important omitted
variables
@ One of the key ones is ability:
e High ability people are more likely to go to school

(72 >0)

e High ability people will be better at their jobs and earn
higher salaries (83 > 0)

e Omitting ability will lead to an upward bias on the
coefficient on education in a wage regression
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Example: Returns to Education

Table 3
Instrumenting schooling with month of birth dependent variable: Log annual income

() ) 3)
OLS 1V Birthmonth 1V Birthmonth x Birthyear
Years of education 0.128%** —0.099 0.079**
[0.013] [0.295] [0.032]
Female —0.601%** —0.612%** —0.602%**
[0.051] [0.069] [0.057]
Relative position —0.035 0.000
[0.090] [0.072)
Birth year FE? Yes Yes Yes
State FE? Yes Yes Yes
F-test for excluded instruments — 0.65 554.89
P =0.6605 P =0.000
Observations 998 998 998
R-squared 0.22 0.21 0.22

From Leigh and Ryan (2008), “Estimating returns to education using different natural experiment
techniques”, Economics of Education Review, 27(2)
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Including Too Many Variables

@ We've seen that omitting important variables leads to
big problems

@ What if we include too many variables?
@ It's not nearly as bad

@ Our coefficients stay unbiased for the regressors that
should be there but we lose some precision

@ These problems are small compared to the problems of
omitted variables, so it is best to error on the side of
including questionable regressors
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Non-linear Relationships

@ We've covered the problems of including the wrong set
of variables in our model

@ The other way we can misspecify the model is by using
the wrong functional form

@ This is a problem we've already encountered and we
solve it with data transformations

@ One way we'll notice we have a problem is if we get

distinct patterns in the residuals plotted against a
regressor
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Non-linear Relationships
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Non-linear Relationships
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Badly Behaved Errors

@ We've just seen that one way we know that the model
is misspecified is if a pattern shows up on a graph of
the residuals and the regressor

@ This leads us into a new set of problems: badly behaved
error terms

@ Several problems can pop up with the error terms:

o Errors are correlated with the regressors
e Errors have nonconstant variance
o Errors are correlated with each other
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