
Announcements

The midterm is on Thursday

It will be in class and similar in format to the old exams
on Smartsite

Bring a non-graphing calculator, something to write
with and a scantron sheet (UCD 2000)

There will be a formula sheet (it’s posted on Smartsite
so you can see what is on it)

It will cover everything up to and including univariate
data transformation (Chapters 1 through 4)

I have office hours this afternoon from 2pm to 5pm (no
office hours on Thursday after the exam)

Problem Set 3 is posted and will graded.
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Notation for Bivariate Data

The choice of which variable is our independent variable
and which variable is our dependent variable depends on
what kind of causality we have in mind

Causality is assumed to run from X to Y

The direction of causality is typically clear from our
economic theory but often can’t be tested

Our methods/statistics typically capture associations,
not causal relationships

Need some sort of experiment to determine causation
(change X holding other things constant)
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Visual Representations of Bivariate Data

The most common way to depict bivariate data is with
a scatter plot

Each observation is single point on the graph

x values are given by the horizontal axis, y values are
given by the vertical axis

In Excel, select the columns containing your x and y
values and choose ’Scatter’ from the Insert menu

A trend line can be added by right clicking on a data
point on the graph and selecting ’Add trendline...’

We’ll go through an example using data on life
expectancy and GNP (gnp-life-expectancy.csv). To
Excel...

J. Parman (UC-Davis) Analysis of Economic Data, Winter 2011 January 20, 2011 3 / 34



Interpreting Scatter Plots

The most basic thing we can see on a scatter plot is
whether there is a positive or negative relationship
between the two variables (or no relationship)

We can also see how strong the relationship is by how
closely the datapoints follow a line

Including the trendline can help pick out the sign of a
very weak relationship

Sometimes the relationship between two variables is
much easier to see on the graph if you transform one or
both of the variables (ln(x),

√
y , etc.) and by adjusting

the scales

Take note of any obvious extreme outlier points, often
times these can be a result of incorrectly coded data or
unobserved values being coded as 99 or something
similar
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Scatter Plot Examples
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Scatter Plot Examples
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Scatter Plot Examples
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From a Scatter Plot to Descriptive Statistics
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From a Scatter Plot to Descriptive Statistics
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From a Scatter Plot to Descriptive Statistics
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From a Scatter Plot to Descriptive Statistics

We want a statistic that captures whether the data
points lie along a positive or negative line and how close
they are to that line

One possibility: the sample covariance

sxy =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ)

Any point that lies in the upper-right or lower-left
quadrants will be a positive term in the sum

Any point that lies in the lower-right or upper-left
quadrants will be a negative term in the sum

The sign of the covariance tells us the sign of the
relationship between the variables
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Covariance and Correlation

A problem with the covariance is its magnitude

The covariance could be large just because x and y
tend to be large numbers

We want a statistic that can tell us not only the sign of
a relationship but also the strength of the relationship

The sample correlation provides a standardized version
of variance:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
=

sxy
sxsy
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Interpreting Correlation

The advantage of correlation is that it is bounded
between −1 and 1

Two variables are perfectly correlated if rxy equals −1
or 1

Two variable are positively correlated if rxy > 0 and
negatively correlated if rxy < 0

The larger the magnitude of the correlation, the
stronger the relationship between x and y
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Interpreting Correlation
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Calculating Covariance and Correlation

You could do it yourself in Excel by calculating all of
the relevant sums

Easier approach is to let Data Analysis do it for you

To get the sample covariance, start by using the
‘Covariance’ option under ‘Data Analysis’

This will produce a table of variances and covariances
but they will be slightly off

Excel’s covariance function divides by n, not by n − 1

You need to multiply result by n
n−1

To get the sample correlation, use the ‘Correlation’
option under ‘Data Analysis’

To Excel for some examples using data on health and
days of missed work (health-habits.csv)...
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The Regression Line

Correlation is an improvement over covariance, but it
still doesn’t tell us everything

In particular, it doesn’t tell us how how large the
change in y associated with a change in x is

We would like to know:

∆y

∆x

This is what a regression line gives us

The regression line:

ŷi = b1 + b2xi
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The Regression Line
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Interpreting the Regression Line

ŷi = b1 + b2xi

ŷi : predicted value for Y for individual i

xi : observed value of X for individual i

b1: intercept (predicted value of Y when X equals 0)

b2: slope (predicted ∆Y for a one unit increase in X )
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Which Regression Line?
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Which Regression Line?
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Which Regression Line?
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Which Regression Line?

There are many plausible lines that can be drawn
through the data points

Each different line would give us a different result for
the relationship between X and Y

We should choose the line that gives us the ‘best fit’

We’ll define ’best fit’ as minimizing the average distance
of all of the data points from the regression line

J. Parman (UC-Davis) Analysis of Economic Data, Winter 2011 January 20, 2011 22 / 34



A More Formal Approach to the ‘Best Fit’

Remember that the regression line gives us a predicted
value ŷi based on the observed value of xi :

ŷi = b1 + b2xi

The actual value of yi will rarely be exactly equal to ŷi

We’ll call the difference between the true and predicted
value of yi the residual, εi :

εi = yi − ŷi

We want to choose the regression line such that the
residuals are as small as possible
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A More Formal Approach to the ‘Best Fit’

How about minimizing the sum of the residuals (or the
average of the residuals)?

No good, if we have big positive residuals and big
negative residuals, we may have a bad fit even though
the sum (or average) of the residuals could be zero

We care about the magnitude of the residuals

What can we do to focus on magnitudes? Square the
residuals:

(yi − ŷi )
2
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A More Formal Approach to the ‘Best Fit’

Now we have a way to define our best fit

We want to choose b1 and b2 to minimize the average
of the squared residuals:

min
b1,b2

∑
(yi − ŷi )

2

Replacing ŷ with the equation for the regression line
makes this:

min
b1,b2

∑
(yi − b1 − b2xi )

2

This is just a calculus problem that we could solve by
taking derivatives with respect to b1 and b2 and setting
them equal to zero
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A More Formal Approach to the ‘Best Fit’

If you work through the math, you come up with the
following two equations giving b1 and b2:

b2 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

b1 = ȳ − b2x̄

Notice that the first equation looks very similar to our
variance and covariance formulas, we can rewrite b2 as:

b2 =
sxy
sxx

= rxy

√
syy
sxx
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Calculating the Regression Line

To calculate b2 and b1 yourself:
1 Calculate the covariance of X and Y using the

covariance function in Excel
2 Calculate the variance of X using the variance function

in Excel
3 Calculate b2 by dividing the covariance of X and Y by

the variance of X
4 Calculate b1 by subtracting x̄ times b2 you just found

from ȳ (x̄ and ȳ can be calculated with the average
function in Excel)

To have Excel calculate b2 and b1, use ’Regression’
from the ’Data Analysis’ choices

Back to Excel and the health and missed work data to
try regressing weight on height...
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Assessing How Good the Fit Is

We found the best fit for the regression line (according
to our definition)

This doesn’t mean that we have a perfect fit; many
data points will not be on the line

We would like to know just how good the fit is, how
well does the line fit the data?

To answer this, we can use either the standard error of
the regression or the R-squared
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The Standard Error of the Regression

Think back to the residuals: yi − ŷi

One way to check how good the fit is is to see how big
the residuals are on average

This is what the standard error of the regression does:

s2e =
1

n − 2

n∑
i=1

(yi − ŷi )
2

The smaller the standard error of the regression is, the
closer the fitted values are to the actual data for y
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The R-Squared

The standard error of the regression depends on the
units that Y is measured in

The R2 provides a standardized measure of how good
the fit is

The idea behind the R2 is to determine how much of
the observed variation in y can be explained by the
regression on x

To do this, we need to measure the total variation in y
and the amount of the variation that isn’t explained by
the regression

These two measures are the total sum of squares and
the error (or residual) sum of squares, respectively
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The R-Squared

The total sum of squares:

TSS =
n∑

i=1

(yi − ȳ)2

The error sum of squares:

ESS =
n∑

i=1

(yi − ŷi )
2

The R-squared:

R2 = 1− ESS

TSS
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The R-Squared

The R2 will always be between 0 and 1

An R2 of 1 means a perfect fit, x perfectly predicts y

An R2 of 0 means no fit, variation in x can’t explain
any of the variation in y

One interpretation of the R2 value is that it is the
percentage of the variation in y explained by variation
in x

With a little algebra, you can show that R2 is the
square of rxy

The higher the correlation of two variables, the greater
the R2 will be
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Regressing Wages on Education

Regression Statistics SUMMARY OUTPUT: Weight as dependent variable
Multiple R 0.532681203
R Square 0.283749264
Adjusted R Square 0.282871505
Standard Error 29.49983204
Observations 818

ANOVAANOVA
df SS MS F Significance F

Regression 1 281318.8979 281318.8979 323.2658446 3.84342E-61
Residual 816 710115.9139 870.2400905
Total 817 991434.8117

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 165 605738 18 65570156 8 87695044 4 30095E 18 202 224555 128 986921Intercept -165.605738 18.65570156 -8.87695044 4.30095E-18 -202.224555 -128.986921
height 4.968722683 0.276353423 17.97959523 3.84342E-61 4.426275353 5.511170013
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Assessing the R-squared

In general, we’d like R2 to be large but a low R2

doesn’t necessarily mean we have nothing of interest

R2 will tend to be high when:

Looking at certain time series data in economics
Looking at data from controlled experiments (especially
in the physical sciences)
When the outcome is only dependent on a handful of
observable variables

R2 will tend to be low when:

Looking at certain cross-sectional data in economics
(especially wages, employment outcomes, productivity,
etc.)
Looking at data where there are important but
unobservable variables
Looking at poorly measured data
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