
Announcements

Don’t forget about Problem Set 4

Midterm is Thursday, February 24 in class

Midterm 2 covers chapters 5 through 8, lectures
1-20-11 through 2-10-11

Don’t forget a scantron sheet and a calculator

Office hours next week: no Monday office hours
(building is locked for Presidents’ Day), Tuesday
2pm-5pm, Wednesday 9am-noon
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Review: Multivariate Regression

Our model is now:

Y = β1 + β2X2 + β3X3 + ...+ βKXK + ε

We want to estimate a ’best-fit’ line:

ŷi = b1 + b2x2i + b3x3i + ...+ bKxKi

ŷi : predicted value of Y for individual i
x2i , ..., xKi : values of X2, ...,XK for individual i
b1: intercept
bk : predicted ∆Y for a one unit increase in Xk holding
all other X ’s constant
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Review: Multivariate Regression: Goodness of Fit

The adjusted R2:

R̄2 = 1− n − 1

n − K

ESS

TSS

ESS =
n∑

i=1

(yi − ŷi )
2

TSS =
n∑

i=1

(yi − ȳ)2

The adjusted R2 will be between 0 and 1 and will be
closer to 1 the better the fit is

Adding a regressor will raise the adjusted R2 if it lowers
the error sum of squares enough to offset the penalty
for increasing k

To Excel for an example with using energy consumption
data (energy-use-w-calculations.xlsx)...
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Review: Multivariate Regression

SUMMARY OUTPUT: KwH of electricity use as dependent variable

Regression Statistics

Multiple R 0.46

R Square 0.2116

Adjusted R Square 0.2107

Standard Error 6785.62279

Observations 2698

Coefficients Standard Error t Stat P‐value Lower 95% Upper 95%

Intercept ‐1058.25 834.01 ‐1.27 0.20 ‐2693.61 577.11

hd65 0.06 0.09 0.72 0.47 ‐0.11 0.24

cd65 2.79 0.21 13.54 0.00 2.39 3.20

totrooms 1480.81 76.59 19.34 0.00 1330.64 1630.99
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Statistical Inference with Multivariate Data

Now it’s time to do statistical inference with
multivariate analysis

Recall that we are still using a single dependent variable
(y) but we now have multiple regressors (x2, x3, ..., xK )

We can use ordinary least squares to estimate an
intercept (b1) and a slope coefficient for each regressor
(b2, ..., bK )

Now our task is to use these results to infer properties
of the population relationships between y and x2, ..., xK .
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Assumptions for the Multivariate Population Model

Just like with bivariate data, we need to make a set of
assumptions about how multivariate regressors are related to
y at the population level. We will make the following
assumptions for multivariate data:

1 The population model is:
y = β1 + β2x2 + β3x3 + ...+ βkxk + ε

2 The error has mean zero and is unrelated with the
regressor

3 The errors for different observations have the same
variance, σ2ε

4 The errors for different observations are unrelated

5 The errors are normally distributed

6 The regressors are not perfectly correlated with each
other
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Assumptions for the Multivariate Population Model

Why do we need this last assumption?

If two regressors are perfectly correlated, it won’t be
possible to distinguish the effect of one from the effect
of the other on y

Suppose x2 = 2x3 and consider the regression equation:

y = 10 + 5x2 + 10x3

If x2 = 2x3 this is the same as:

y = 10 + 5 · 2x3 + 10x3 = 10 + 0 · x2 + 20x3

So b2 = 5 and b3 = 10 actually gives the same fit as
b2 = 0 and b3 = 20
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Assumptions for the Multivariate Population Model

If two regressors are perfectly correlated, we don’t have
a unique set of coefficients and we won’t be able to run
our regressions

When might we run into perfect correlation? Think
about trying to predict how people vote based on how
much money they earn and how much they pay in
taxes. If taxes are just a percentage of income, we’ve
got perfectly correlated regressors.

What do we do? Drop one of the regressors (if we don’t
very bad things happen)

Now back to Excel to see very bad things in action...
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Perfectly Correlated Variables in a Regression

Regression Statistics Regression Statistics

Multiple R 0.46 Multiple R 0.46

R Square 0.2116 R Square 0.2116

Adjusted R Square 0.2107 Adjusted R Square 0.2104

Standard Error 6785.62279 Standard Error 6786.88154

Observations 2698 Observations 2698

Coefficients Standard Error Coefficients Standard Error

Intercept ‐1058.25 834.01 Intercept ‐6.20E+13 2.21E+15

hd65 0.06 0.09 hd65 0.07 0.10

cd65 (fahrenheit) 2.79 0.21 cd65 (fahrenheit) 1.94E+12 6.90E+13

totrooms 1480.81 76.59 totrooms 1480.87 76.63

cd65(celcius) ‐3.49E+12 1.24E+14

SUMMARY OUTPUT: KwH of electricity use as 

dependent variable

SUMMARY OUTPUT: KwH of electricity use as 

dependent variable

J. Parman (UC-Davis) Analysis of Economic Data, Winter 2011 February 17, 2011 9 / 23



Properties of our Coefficient Estimates

If all of the assumptions hold, the coefficient estimates
have very useful properties

First, they are unbiased estimates of the population
coefficients (E (bj) = βj)

Second, each estimated coefficient is normally
distributed (bj ∼ N(βj , σ

2
j ))

Finally, the test statistic:

t =
bj − βj

sbj

is t distributed with n− k degrees of freedom (sbj is the
standard error of the estimated slope coefficient)
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Hypothesis Testing on Individual Coefficients

If you want to do hypothesis testing for an individual
coefficient, everything works the same as the bivariate
case except the degrees of freedom are different now
(n − k instead of n − 2)

The one big difference is in interpretation

If we’re testing bj , we’re testing the relationship
between xj and y holding the values of all of our other
regressors constant

To see the difference, let’s look at an example in Excel
(life-expectancy-data.xlsx)...
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Hypothesis Testing on Individual Coefficients

SUMMARY OUTPUT: Life expectancy as dependent variable

Regression StatisticsRegression Statistics

Multiple R 0.83

R Square 0.68

Adjusted R Square 0.68

Standard Error 5.63

Observations 199

Coefficients Standard Error t Stat P‐value Lower 95% Upper 95%

Intercept 27.60 1.95 14.13 0.00 23.75 31.46

ln(GDP per capita) 5.14 0.25 20.67 0.00 4.65 5.63
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Hypothesis Testing on Individual Coefficients

SUMMARY OUTPUT: Life expectancy as dependent variable

Regression StatisticsRegression Statistics

Multiple R 0.83

R Square 0.70

Adjusted R Square 0.69

Standard Error 5.53

Observations 199

Coefficients Standard Error t Stat P‐value Lower 95% Upper 95%

Intercept 26.29 1.98 13.29 0.00 22.39 30.19

ln(GDP per capita) 0.87 1.55 0.56 0.58 ‐2.19 3.92

ln(consumption per capita) 4.73 1.69 2.80 0.01 1.40 8.07
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Hypothesis Testing on Multiple Coefficients: Overall
Significance

We have a new option available to us, hypothesis tests
relating to multiple coefficients

We’ll start by looking at all of the coefficients at once
in a test of overall significance

Formally, we want to test the following set of
hypotheses:

Ho : β2 = 0, β3 = 0, ..., βk = 0

Ha : at least one of β2, ..., βk 6= 0

Another way of stating the null hypothesis is that the
regressors explain none of the variation in y

To test this hypothesis, we need a new kind of test
statistic
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Testing Overall Significance

Our test statistic for testing overall significance is:

F ∗ =
R2

1− R2

n − k

k − 1

Notice that the value of the test statistic will get larger
as R2 gets larger

So bigger values of F should make us more likely to
reject the null hypothesis

How do we know when a value is big?
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The F Distribution
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Testing Overall Significance

It turns out that our test statistic F ∗ is distributed
according to an F distribution with n − k and k − 1
degrees of freedom

We can use the F distribution to determine the
probability of observing our value of F or something
larger if the null hypothesis is true

If this probability is too low, we’ll reject the null
hypothesis

We can do this with either a p-value approach or a
critical value approach
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Testing Overall Significance

Using the p-value approach:

p = Pr(Fk−1,n−k > F ∗)

If p is less than our significance level α we reject the
null hypothesis

Using the critical value approach:

c = Fα,k−1,n−k

If F ∗ is greater than c we reject the null hypothesis
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Testing Overall Significance

In Excel, we can calculate the p-value as:

p = FDIST (F ∗, k − 1, n − k)

We can calculate the critical value as:

c = FINV (α, k − 1, n − k)

Alternatively, we can use the F statistic and p-value
reported in Excel’s regression output

Back to our Excel regression...
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Testing the Significance of a Subset of Regressors

Sometimes we don’t want to test the overall
significance of a regression, instead we want to test the
significance of a particular subset of regressors

For example, suppose we had a wage regression with
lots of information on education, demographics, etc.

We might be interested in testing whether including
information on an individual’s parents can improve our
model

Our hypotheses in this case are:

Ho : βg+1 = 0, ..., βk = 0

Ha : at least one of βg+1, ..., βk 6= 0
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Testing the Significance of a Subset of Regressors

We call our model with all of the regressors in it the
unrestricted model:

y = β1 + β2x2 + ...+ βgxg + βg+1xg+1 + ...+ βkxk + ε

We call our model without the subset of regressors we
are interested in the restricted model:

y = β1 + β2x2 + ...+ βgxg + ε

We basically want to test whether the fit is significantly
better for the unrestricted model compared to the
restricted model
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Testing the Significance of a Subset of Regressors

To do that, we use the following test statistic:

F ∗ =
ESSr − ESSu

ESSu

n − k

k − g

where ESSr is the error sum of squares for the restricted
model and ESSu is the error sum of squares for the
unrestricted model

We can also write this test statistic in terms of the R2

of the two models:

F ∗ =
R2
u − R2

r

1− R2
u

n − k

k − g

Either way, it is clear that F ∗ is larger the bigger the
improvement in fit is when switching from the restricted
to unrestricted model
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Testing the Significance of a Subset of Regressors

The test statistic is distributed according to an F
distribution with k − g and n − k degrees of freedom

To test the hypothesis, we can take either the p-value
approach (p = Pr(Fk−g ,n−k > F ∗)) or the critical value
approach (c = Fα,k−g ,n−k)

If p is less than α or if F ∗ is greater than c , we will
reject the null hypothesis

Back to Excel...
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