
The Distribution of the Slope Coefficient

Given our population assumptions:

E (b2) = β2 (so b2 is an unbiased estimator)

The standard error of b2 is:

sb2 =

√
s2e∑n

i=1(xi − x̄)2

The test statistic t∗ = b2−β2
sb2

is t distributed with

(n − 2) degrees of freedom
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The Distribution of the Intercept

Given our population assumptions:

E (b1) = β1 (so b1 is an unbiased estimator)

The standard error of b1 is:

sb1 =

√
s2e · 1n

∑n
i=1 x2

i∑n
i=1(xi − x̄)2

The test statistic t∗ = b1−β1
sb1

is t distributed with

(n − 2) degrees of freedom
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Bivariate Hypothesis Testing

The basic idea behind our hypothesis testing is the
same as with univariate data

We will choose a value for β1 (or β2)

Based on the distribution of b1 (or b2), we will
determine the probability of observing our b1 (or b2) if
the true value of the population coefficient is what we
guessed

If this probability is high, we don’t reject our initial
guess

It this probability is very low, we reject our intitial guess
in favor of whatever we have specified as the alternative
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Bivariate Hypothesis Testing
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Bivariate Hypothesis Testing

Once we have calculated our test statistic, everything
works the same as it did for univariate hypothesis
testing

The basic steps:
1 Formulate the null hypothesis (say β2 = β∗

2 ) and
alternative hypothesis and choose a significance level

2 Calculate b2 and sb2
3 Use the values of b2 and sb2 to calculate t∗

4 Either compare t∗ to your critical value or calculate the
p-value and compare to α

The one difference from univariate hypothesis testing is
that we are now using (n − 2) degrees of freedom
(important when you are calculating critical values or
p-values)
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Bivariate Hypothesis Testing

For a two-tailed test:

Setting up the hypothesis:

Ho : β2 = β∗2
Ha: β2 6= β∗2

The test statistic:

t∗ =
b2 − β∗2

sb2

Evaluating the test statistic

p = Prob(|Tn−2| ≥ |t∗|)

c = tα
2
,n−2

Reject Ho if p < α or if |t∗| > c
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Bivariate Hypothesis Testing
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Bivariate Hypothesis Testing
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Bivariate Hypothesis Testing

For an upper one-tailed test:

Setting up the hypothesis:

Ho : β2 ≤ β∗2
Ha: β2 > β∗2

The test statistic:

t∗ =
b2 − β∗2

sb2

Evaluating the test statistic

p = Prob(Tn−2 ≥ t∗)

c = tα,n−2

Reject Ho if p < α or if t∗ > c
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Bivariate Hypothesis Testing
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Bivariate Hypothesis Testing
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Bivariate Hypothesis Testing

For a lower one-tailed test:

Setting up the hypothesis:

Ho : β2 ≥ β∗2
Ha: β2 < β∗2

The test statistic:

t∗ =
b2 − β∗2

sb2

Evaluating the test statistic

p = Prob(Tn−2 ≤ t∗)

c = −tα,n−2

Reject Ho if p < α or if t∗ < c
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Excel Commands for Hypothesis Testing

p-value for a two-tailed test: TDIST (|t∗|, n − 2, 2)

p-value for an upper one-tailed test (assuming t∗ > 0):
TDIST (t∗, n − 2, 1)

p-value for a lower one-tailed test (assuming t∗ < 0):
TDIST (−t∗, n − 2, 1)

critical value for a two-tailed test: TINV (α, n − 2)

critical value for an upper one-tailed test:
TINV (2α, n − 2)

critical value for a lower one-tailed test:
−TINV (2α, n − 2)
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Hypothesis Testing Example

Let’s go back to our NBA salary data and try out
bivariate hypothesis testing

It turns out that when ln(salary) is regressed on assists
per game, the slope coefficient is .147, so an extra assist
per game is associated with a 14.7% increase in salary

Suppose we want to know whether an extra rebound
per game is less valuable than an extra assist per game

The hypothesis we want to test is whether an extra
rebound per game is associated with an increase in
salary of less than 14.7%:

H0: β2 ≥ 14.7
Ha: β2 < 14.7

Let’s go to Excel to test this (nba-data.csv) ...
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Testing the Value of Rebounds

H0: β2 ≥ 14.7
Ha: β2 < 14.7

From Excel, b2 was 0.146474 and sb2 was 0.016257

t∗ =
0.146474− .147

0.016257
= −0.03235

p = TDIST (0.03235, 270− 2, 1) = 0.487

So we fail to reject the null hypothesis that the value of
a rebound is greater than or equal to the value of an
assist
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When to Use a Two-Tailed Test

The most common time to use a two-tailed test is when
we want to know whether x has any statistically
significant relationship with y

In this case, we are testing the following hypotheses:

Ho : β2 = 0
Ha: β2 6= 0

This is the test that the t-stats and p values given in
Excel’s regression output correspond to
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When to Use a Two-Tailed Test

There are situtations that call for a two-sided test and a
value for β∗2 other than zero

Consider a regression of GDP on government spending,
we would want to know whether an extra dollar spent
by the government leads to simply an extra dollar of
GDP or some other amount

Another case would be estimating whether demand is
unit elastic by regressing log of demand on the log of
the price
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When to Use a One-Tailed Test

One-sided tests are useful when we want to test for the
sign of a coefficient or when we want to test whether a
coefficient is greater than an economically important
cutoff

Consider the government spending example again, we
may want to test for a multiplier effect (so we would
test whether the coefficient on government spending
was greater than 1)

When testing for a sign of a coefficient, people often
use a two-tailed test to see if there is any significant
relationship and then just check the sign of the
coefficient (be careful about interpreting p-values)
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Confidence Intervals for Regression Coefficients

Our hypothesis testing techniques let us test whether
the coefficient is equal to a particular value

Another useful way to do statistical inference is to
construct a confidence interval for the coefficient

Recall confidence intervals from univariate inference:
the population mean fell within the (1− α) confidence
interval with a probability of (1− α)%

The confidence interval for the slope coefficient is
justing telling us the range of values β2 is likely to be in
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Confidence Intervals for Regression Coefficients

We calculate the (1− α) confidence interval as:

b2 ± tα
2
,n−2 · sb2

Excel will give the 95% confidence interval in the
regression output...for other confidence intervals, you
need to do the calculation yourself

The confidence interval will be centered around our
estimated slope coefficient

The interval will be wider if the standard error is larger

The interval will be wider if we choose a smaller α

J. Parman (UC-Davis) Analysis of Economic Data, Winter 2011 February 3, 2011 22 / 33



An Example: Drinking and Obesity

Suppose we are interested in whether drinking is
associated with obesity (think of beer guts)

First, we need to decide which data is most useful to
our research question

We could regress weight on amount of drinking but this
has some problems

A lot of people weigh more because they are taller, not
because they are overweight

An alternative is to use the body mass index (bmi):

bmi =
weight

height2
· 703

To Excel (alcohol-bmi.csv) ...

J. Parman (UC-Davis) Analysis of Economic Data, Winter 2011 February 3, 2011 23 / 33



An Example: Drinking and Obesity

The coefficient on days of alcohol consumption is very
statistically significant (the p-value was 0.0084)

We had a fairly narrow confidence interval which means
we have a good idea of how big the true coefficient is

But all of this information still doesn’t tell us whether
we should really care

Given our regression results, let’s predict the bmi’s for a
person who doesn’t drink and a person who drinks every
day:

b̂mi(0) = 27.69− .25 · 0 = 27.69

b̂mi(7) = 27.69− .25 · 7 = 25.94

Is this an important difference?
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An Example: Drinking and Obesity

<16.5 severely underweight
16.5 to 18.5 underweight
18.5 to 25 normal
25 to 30 overweight
30 to 35 obese I
35 to 40 obese II
40 to 45 severely obese
45 to 50 morbidly obese
50 to 60 super obese
>60 hyper obese

BMI cutoff values
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An Example: Drinking and Obesity

So the association between drinking and bmi is very
statistically significant

But the size of the coefficient actually isn’t all that
impressive (and there are issues with interpreting what
it means)

An extra day of drinking a week is associated with a
very small change in bmi relative to our various bmi
cutoffs

This is a case where we say that the coefficient is
statistically significant but not economically significant

J. Parman (UC-Davis) Analysis of Economic Data, Winter 2011 February 3, 2011 26 / 33



Economic vs. Statistical Significance

Statistical significance is just telling us whether a
coefficient is different than zero (or whatever we chose
as β∗2)

This doesn’t mean we should care about the coefficient

We also need to think about whether the magnitude of
coefficient is large

When we consider whether the magnitude is large
enough to be an important effect, we are consider
economic significance

We don’t have any formal tests for economic
significance, it is left to our judgement
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Economic Significance and the Confidence Interval

We can have a coefficient that is statistically significant
but that has a confidence interval too wide to make
conclusions about economic significance

For example, suppose that the coefficient on education
when ln(wage) is regressed on years of education has
the following 95% confidence interval:

βedu = .05± .04

At the lower end of this interval, the effect of education
on wage is not all that impressive while at the other end
it is quite large

We can say that education is statistically significant but
to say whether it is really important would require
narrowing the confidence interval (say by using better
data and more observations)
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A Cautionary Note

A regression still doesn’t tell you everything about a
bivariate relationship

We’ve already talked about how a basic regression does
not establish causality

Beyond that, there are many other features of data that
won’t be apparent in regression results

We’ll take a look at just how important this can be with
a set of data called the Anscombe’s Quartet
(anscombe-example.xlsx)
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The Anscombe Quartet
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The Anscombe Quartet
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The Anscombe Quartet
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The Anscombe Quartet
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